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The problem of the dispersion of a passive impurity in a circular tube is considered. Using an asymptotic method, similar to the 
Chapman-Enskog method of the kinetic theory of gases or the Krylov-Bogoloyubov averaging method of non-linear mechanics, 
an equation of steady diffusion is derived for the impurity concentration, averaged over the tube cross-section, which was obtained 
by Taylor from physical considerations. Using the asymptotic method a recurrence system of equations is obtained for the expansion 
terms of arbitrary order. Estimates are made of the applicability of Taylor's model of longitudinal dispersion, which refines the 
estimated established by Taylor. To extend the limits of applicability of Taylor's model a two-term Bubnov-Galerkin representation 
is employed for the concentration, averaged over the tube cross-section, which is now described by a hyperbolic-type telegraph 
equation. Green's function for this model is obtained, according to which the impurity concentration distribution is characterized 
by the presence of pev:urbation fronts with finite propagation velocities. The asymptotic agreement between Green's function 
of the hyperbolic model and Green's function of the Taylor model is demonstrated. © 2000 Elsevier Science Ltd. All rights reserved. 

When investigating the problem of the longitudinal dispersion of a passive impurity in a fluid flow in 
a circular tube, Taylor [1, 2] found that the interaction of convection and transverse diffusion processes 
generates a specific mechanism of longitudinal dispersion, which is much stronger than the molecular 
diffusion mechanism. The equation Taylor obtained for the impurity concentration, averaged over the 
tube cross-section, has found wide application when constructing one-dimensional models of different 
devices such as, for example, circulating thermal and chemical reactors. However, Taylor's approach 
is based on physical considerations, so that there is a need to derive Taylor's equation using some regular 
procedure of successive approximations. Moreover, Taylor's model leads to a parabolic equation of 
unsteady diffusion and, consequently, to the well-known paradox of an infinite perturbation 
propagation velocity. 

We show below that Taylor's model can be obtained using an asymptotic method, in which a small 
parameter and estimates of the applicability of the model are determined, and a hyperbolic model of 
longitudinal dispersion with finite perturbation propagation velocities is obtained, which is 
asymptotically equivalent to Taylor's model in regions far from the perturbation fronts. 

1. T H E  A S Y M P T O T I C  T H E O R Y  O F  T A Y L O R  DISPERSION 
O F  A P A S S I V E  I M P U R I T Y  

In the simplest case of a linear mechanism of unsteady dispersion of a passive impurity, when there 
are no physical--chemical changes, the problem is described by the unsteady convection-diffusion 
equation for a passive impurity concentration c(R, t) 

~¢ 
+ (V. V)c = (V. D. V)c (1.1) 

Here V is the velocity vector of the carrying medium (a liquid or a gas), R is the radius vector of a point 
in space and D is the tensor of the diffusion coefficients. In the general case both V and D may be 
functions of time and the coordinates, which are assumed known. 

Taylor considered the axisymmetric problem of unsteady dispersion of a passive impurity in a 
cylindrical tube of radius a, described by the equation 
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1 3 [  Oc] (1.2) be bc D( r ) r _~r 
--~ + u(r)-~x = r ~r 

and the boundary condition 

OdOr=O when r = a  (1.3) 

where x is the longitudinal coordinate, measured along the tube axis, r is the radial coordinate, measured 
from the tube axis, u(r) is the Poiseuille laminar velocity profile [1] or the turbulent velocity profile, 
which was specified in (2) by a table of experimental values, and D(r)  is the molecular or turbulent 
diffusion coefficient of the impurity. When writing the convection-diffusion equation in the form (1.2) 
Taylor assumed that the effect of longitudinal diffusion D(b2c/bx 2) in Eq. (1.1) could be neglected. This 
assumption was based on an analysis he made of the results obtained. 

For the concentration, averaged over the tube cross-section 

2 a 
Co(X, t) = (c) = - T  S c( x, r, t )r  dr (1.4) 

a o 

(the angular brackets here and henceforth denote quantities averaged over the tube cross-section) the 
following "conservation law" is obtained from (1.2) 

Oc0 + b(J) 
bt  " ~ x  = 0  (1.5) 

where the average flow is 

(J) = (uc) (1.6) 

In discussing this convection-diffusion problem Taylor notes that for practical purposes it is of interest 
to obtain a closed equation for the mean concentration c 0, i.e. to obtain some approximate expression 
for the mean flow (J') in terms of Co. Starting from physical considerations (which he himself called 
intuitive), Taylor derived the following approximate equation 

OCo _~_ /)2c0 (1.7) 
Ot +(u) - D e f  t (~'X2 

where, for a Poiseuille laminar velocity profile 

u = um[l - (r[a) 21 

and the effective diffusion coefficient equals 

2 2 
Def f = a Urn/(192D) 

It can be seen that the effective longitudinal dispersion is inversely proportional to the coefficient 
D (D = const). 

In papers devoted to a rigorous derivation of Taylor's model and analogues for other problems (see the review 
in [3]), an attempt was made to justify or refine Taylor's assumptions, but no appreciable understanding is achieved 
in them as, for example, in [4], or they even contain errors (for example, in [3] the approximate expression for the 
concentration c violates the condition (c) = Co). A clear description of Taylor's results within the framework of his 
idea has been given by Levich [5]. 

The "closure problem" formulated by Taylor is a standard one in theoretical and mathematical physics. For 
example, in the language of the kinetic theory of gases Eq. (1.2) can be regarded as a "kinetic equation" for the 
distribution function c(x, r, t), Eq. (1.5) can be regarded as the "conservation law" for its first (zeroth) moment, 
while Eq. (1.7) can be regarded as the "approximate hydrodynamic equation". The problem of deriving Eq. (1.7) 
from (1.2) itself has now become the problem of changing from a detailed "microscopic" description at the level 
of the "distribution function" c(x, r, t) to a rough "macroscopic" description of the system using the hydrodynamic 
parameter Co(X, t), obtained from c(x, r, t) using the averaging procedure. 
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In the kinetic theoJ~ of gases the corresponding problem is solved using the Chapman-Enskog method [6], 
which in the jargon of specialists is called the "expansion in gradients of the parameters of the hydrodynamic 
state". A general approach to solving this kind of problem has been given by Bogolyubov [7]. He notes that the 
problem of an abbreviated description of the systems is related to the problem of averaging non-linear dynamical 
systems over fast vari~tbles, for the solution of which he developed, together with Krylov, appropriate asymptotic 
methods. In the case considered here the fast variable is the transverse coordinate r, along which averaging is carried 
out. 

Following Bogolyubov [6, Section 9], in order to emphasize in explicit form the fact that x is a slow 
variable and to avo:id superfluous coordinate transformations, we will introduce a small parameter e 
in a formal way and: we will consider the distribution c (e ,  r, t )  and construct asymptotic expansions in 
powers of this parameter. The parameter e will be assumed to be equal to unity in the final formulae. 

As in [6], since we wish to obtain an equation to study the "slow" process of the evolution of the 
hydrodynamic parameter Co, we will construct a solution of dynamic equation (1.2) which depends 
functionally on time via the time-dependence of the "hydrodynamic parameter" c0(k, t) with 
c = ex  [7 ]  

C(~, r, t) = Co( ~, t)+ Y. e~ck(~, rl Co), (c k ) = 0 (1.8) 
k=l 

OC 0 _ a(J) aJ k 
at = -e - -~ - -  = - e  ~ C: ~ Jk = (°ck) (1.9) 

k=o ' 

The functional tilme dependence through Co of the terms of expansion (1.8) implies that, when 
calculating their derivatives with respect to t we must differentiate the functions Co occurring in them 
and replace aco/at  in accordance with expansions (1.9). In non-linear mechanics this procedure 
corresponds to the elimination of the secular terms, whereas in the kinetic theory and in the case 
considered it enables us to obtain an asymptotic description of the evolution "for long times" or "at 
the hydrodynamic level" [8]. 

In view of the lirtearity and structure of Eqs (1.8) and (1.9) it can be shown that the terms of the 
expansion Ck has the following structure 

and, correspondingly, 

~(k) c 
c k = Ak(r)~-~';'i,k ° (1.10) 

o q -  

- "uA " a(k)c° J ~ - ( k )  ~ (1.11) 

These formulae can also be used for k = 0 if we assume that the zeroth-order derivative is simply 
the operation of multiplication by unity. It is obvious thatA0 = 1. The functionsAk(r) satisfy the equations 
which follow from Eq. (1.2) on substituting relations (1.8)-(1.11) and equating to zero the groups of 
terms of like powers of the parameter e (which is equivalent to equating to zero terms with derivatives 
~(k)co/a~k o f  the same order k > 1) 

I d dA~+ I 
- - - r  , = G k +  , (1.12) 
r d r  d r  

where 

G~+ I = uA k - Y. (uAp)A~_e 
p=O 

The solution of Eq. (1.12) which satisfies boundary condition (1.3) can be written in the explicit form 

A~+ I (r) r k,o 
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where the constant nk+ 1 is found from the condition Co = (c) o r  (d '~k+l)  = 0 which guarantees that the 
corrections c;,+1 make no contribution to the mean concentration Co. Hence, all the terms of expansions 
(1.8) and (1.9) are defined uniquely (in explicit form). 

We will present the results of calculations of the first few terms of the asymptotic series 

A0=I, Jo =um0c° 
2 3x 

= . . . . .  a u m As a2uml6D + , Jt = -  , D,.#- = 192D 

(1.13) 

In this order of the asymptotic theory the corresponding "hydrodynamic equation", i.e. the approxi- 
mate equation for the mean concentration Co, is exactly identical with Taylor's equation (1.7), which is 
now obtained as the product of the regular asymptotic procedure and can be refined by taking the 
following approximations into account. For example, in the following approximation (which are not 
henceforth used, the lengthy calculations and expressions being omitted) 

_ ~2c0 ' ttma3 4 

J2 =/-~ ~ /92 = 23040D 2 

and the generalized dispersion equation for Co takes the form 

OCo +um 0Co ~2c0 ~3c 0 
~t 2 ~x = De# ~x2 - D2 ~x 3 

(1.14) 

The Chapman-Enskog method is often called the expansion in gradients of the parameters of the 
hydrodynamic state, since each following term of this expansion of the solution of Boltzmann's equation 
(for a low Knudsen number) contains a number of derivatives with respect to the spatial variable that 
is one greater than the previous term. In exactly the same way, the asymptotic expansions (1.8) and 
(1.9) contain in each subsequent term a derivative with respect to the longitudinal coordinate that is 
one higher than in the previous term, as is clearly shown in relations (1.10) and (1.11). 

In dimensionless variables the series in formulae (1.8) and (1.9) will be expansions in powers of the 
dimensionless parameter e, = a2Um/(Ol), where l is the characteristic scale of change of c along the 
longitudinal coordinate. 

Analysing the conditions of applicability of model (1.7), Taylor requires that the following order 
relations must be satisfied [1, 5] 

Derf >> D, e . ~ l  

The first relation enables us to neglect the longitudinal molecular diffusion term on changing from 
Eq.(1.1) to (1.2), whereas the second can be rewritten in the form of the condition for the ratio of the 
transverse scale a to the longitudinal scale l to be small in the form 

al l  aDl(aum) (1.15) 

The following limit follows from the condition Def t >> D 

D/(aUm) "~ 0 . 0 7  (1.16) 

The explicit expression for the correction of the next order to the Taylor expression obtained above 
enables us to relax condition (1.15) considerably. Really, for the Taylor model to be valid it is sufficient 
for the following condition to be satisfied 

Deff IOZco/OX 2 I,> D 21O3Co/OX31 

o r  

a/! ,~ 120(D/(au,,,)) (1.17) 
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which contains a numerical factor which relaxes requirement (1.15) by more than two orders of 
magnitude. Note that the condition I -> 0.12a follows from limits (1.15) and (1.16), but it is not sufficient 
for Taylor's model 'to be applicable if condition (1.17) is not satisfied. 

The fundamental solution, called the source function or Green's function, of Eq. (1.7) for the main 
approximation, representing Taylor's model of longitudinal dispersion of a passive impurity in the case 
of the combined effect of transverse diffusion and convection in a non-uniform longitudinal velocity 
field, has the form 

G(x, t) = (4~Defft)-~ exp[-(x - (u)t) 2 1(4Delft)] 

lira G(x, t) = 8(x), ~ G(x, t)dx = 1 
t---~0 

(1.18) 

2. T H E  H Y P E R B O L I C  M O D E L  O F  T H E  D I S P E R S I O N  
O F  A P A S S I V E  I M P U R I T Y  

In experiments on ,equipment constructed in accordance with the conditions of applicability of Taylor's 
theory [1, 2] it was confirmed that an asymptotic dispersion mode in the form (1.18) is established. 
Nevertheless, the description of unsteady dispersion based on model (1.7) has a defect, known as the 
paradox of infinite perturbation propagation velocity. It can be seen that, according to solution (1.18), 
a perturbation produced at the instant of time t -- 0 at the point x = 0 will, at any subsequent instant 
of time t > 0, be perceived at any distance from the point where it arises, i.e. the velocity of propagation 
of the perturbations is infinite. At the same time it is obvious that Eq.(1.2) does not possess this property: 
the maximum velocity with which a tracing particle can propagate in the longitudinal direction cannot 
exceed the maximum flow velocity Um. This paradox was solved in [9] by adding an "artificial propagation 
term" to the diffusion equation and converting it into a hyperbolic-type telegraph equation, which ensures 
that the perturbation propagation velocity is finite and that the solution has a diffusion form when this 
velocity approaches infinity. 

Similar problems arise in many areas of mathematical and theoretical physics (see, for example, the reviews 
[10, 11] in which more than two hundred publications are cited on this question in heat-conduction problems alone) 
and, in particular, in the classical hydrodynamics of a viscous heat-conducting medium [12]. The artificial addition 
of the second derivative with respect to time in the parabolic diffusion and heat-conduction equations or additional 
terms of a relaxation type with time derivatives in Fick's and Fourier's transport laws, relating mass and heat flows 
to the concentration and temperature gradients they generate, does not solve the problem, since it is theoretically 
necessary to calculate the values of the coefficients of these terms using the initial model of the phenomenon. This 
problem has been solved for the cases of a single-component medium [12-14] and a multicomponent medium 
[15-17] using generalized normal solutions of Boltzmann's equation [14, 18, 19]. For the problem in question of 
unsteady longitudinal dispersion of a passive impurity in a steady flow of fluid in a cylindrical tube, wave (i.e. 
hyperbolic) models have also been developed [20-24]. 

Below, we will use the Bubnov-Galerkin method to construct a hyperbolic model of the longitudinal dispersion 
of a passive impurity, but, unlike [20, 21, 25], where it is also employed, here the test functions and approximate 
solutions will be constructed using the results of the asymptotic theory developed in Section 1. As was further shown, 
this ensures that the hyperbolic models are matched to the results of the asymptotic method under conditions when 
the latter is applicable. 

In dimensionles:~ variables 

x = Dtla 2, p = r/a, ~ = Dxl(a2um) 

the equation of unsteady convection-diffusion of a passive impurity in steady laminar flow in a cylindrical 
tube (1.2) takes the form 

Lc=O 

a 3 
L = ~-~+u ~-~- A, u = I - p  2,  : gipg) 

(2.1) 

The impurity concentration c is subject to the boundary condition 
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0cfbp = 0 when p = 1 (2.2) 

The initial condition is specified in time depending on the specific problem and is omitted here. 
To derive the hyperbolic model of unsteady dispersion we will use the ideas of the Bubnov-Galerkin 

method and the results of the asymptotic analysis of the problem given above. 
According to this method, the approximate solution of Eq.(2.1) can be represented in the form of a 

section of a series 

N 

c~ (~, p, x) = c o (~, x) + Y. a, (~, x)% (p) (2.3) 
k=l 

Here the test functions %(9)  need not be normalized or mutually orthogonal but must satisfy the 
conditions of linear independence: no function % can be represented in the form of a linear combination 
of other test functions. Moreover, the functions % are subject to the natural conditions 

b%/bp = 0 when p = 1 and p = 0 (2.4) 

necessary to satisfy conditions (2.2) and (1.4). Here the angular brackets now mean an averaging 
operation of the form 

I 

(F(p)) = 2 S F(p)pdp 
0 

To obtain the equations from which the coefficients Co and a k of (2.3) are determined, we can use various 
approaches, particularly for small N, but the classical approach is the most natural one. According to 
this these equations are determined from the system of equations 

(% (LcN )) = 0, k=0,1  ..... N; ~00=! 

where L is the operator of Eq.(2.1). In explicit form, the equations for determining the coefficient 
functions Co and a k have the form 

OCo ,,OCo. EOak- 

u Oak ~ E ~ak Y. Ak t , ~ +  2., k p ~ - 2 - ,  A,j,a~=0, p = l  ..... N 
k=l u l ,  k=O 0% k=l 

Akp = ((p,~0p), V,~, = (v (p,~0p), A~  = (~o#(A~0,)) 

Various systems of test functions % are considered in the publications mentioned above. Below, we 
propose to use as the functions % the polynomialsAk(P), reduced to dimensionless form, which satisfy 
condition (2.4). 

We will construct the simplest hyperbolic model of longitudinal dispersion using the two-term Bubnov- 
Galerkin representation 

c (p, ~, 1:) = Co( ~, x) + a{ (~, "¢)qh (P) 

where, according to the results (1.13) obtained above, we can choose as the function % 

% (p) = _ (p4 _ 2p2 + ~ )  / i 6 

Hence, we obtain a system of two equations for the functions Co and al 

I 0c 0 I 0a I ~c° ~ - -  - -  = 0 
~: 2 0 k 192 O~ 

0a; 0% . 5 Oa t . 
~: - 1 5 - - ~ * ~ - ~ - . 1 5 a  I =0  

(2.5) 
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At first glance it would seem that the two-term Bubnov-Galerkin approximation is an extremely 
simplified description of unsteady dispersion of a passive impurity. However, in fact, it contains not 
only the Taylor moclel, characterized by an effective diffusion coefficient, but also a term of the next 
order of the asympl!otic theory with an exact value of the coefficient D e. 

This can be shown by two methods. 

First method. We write the second equation of system (2.5) in the form 

OC 0 I 3a I I (Oa!+ I Oa t )  
a, = ~ 120 c)~ ]'5 [ , ~  2 " ~ )  

We recall that, in the asymptotic theory, the coefficient al represents the corrections to Co, i.e. it is a 
term of the next approximation with respect to c o , and, moreover, the scale along the longitudinal 
coordinate is assumed to be large while the corresponding derivative 0 / ~  is assumed to be small. Hence, 
the relation written above can be integrated by substituting into the right-hand side, instead of the 
quantity al, its principal value Oc0/~ and we thus obtain 

Dc 0 I 3Zc0 I DZa I 
al = 8~ 120 ~ 2  2880 ~ 2  

The last term in this relation has a higher order, the third (O(03C0/0~3)), than the first two terms (first- 
and second-order infinitesimals), and it can be dropped. Substituting the expression obtained for al 
into the first equation of system (2.5), we obtain 

3c o I ~2c 0 I ~3c 0 ~Co ~ .~ )  = 
fit ~)~ 192 O~ 2 23040 b~ 3 

It can be seen that this equation agrees completely with Eq.(1.14) for Co, if we rewrite the latter in 
dimensionless form. 

The second method. The second method employed when analysing linear systems consists of comparing 
the dispersion relations for the Taylor and hyperbolic models of the longitudinal dispersion of a passive 
impurity. 

To simplify the later calculations we will change to a frame of reference moving with the average 
velocity of the carrying liquid (l)) = 1/2. Assuming x' = x, 1] = ~ - (t))x, instead of (2.5) we have 

~Co= I ~a I 
~x' 192 ~q 

~a~ I- I ~a I _ ~  bX" ~- -~- -  15 +15a, =0  
(2.6) 

Consider the dispersion relation for system of equations (2.6), corresponding to its solutions with a 
space-time dependence of the form exp (ioW-ikrl). It can be reduced to a quadratic equation, the roots 
of which are 

5k k } co±(k)=~ -ff 15i !+ I + ~  ~,~+15i 

Since each power of - i k  appears as a result of differentiating the solution with respect to the spatial 
variable (or ~), the expansion in power series in - i k  corresponds to the asymptotic Taylor expansion 
(1.9). These expan,;ions of the roots of the dispersion relation have the form 

i¢o_(k) = (-ik)---~-2 (ik)---~3 ÷ O(k 4) 
192 23040 

io~+(k)=-15+ik-i¢o (k) 
8 
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The root co_(k) corresponds to a diffusion-type mode and agrees with Eq.(1.14) for Co with correct 
values of the first two coefficients on the right-hand side, whereas the root co_(k) corresponds to a rapidly 
propagating attenuating mode. Hence, an analysis of the dispersion relation also shows that the two- 
term approximation, being represented in the form of an expansion in gradients (i.e. in powers of -ik), 
agrees, apart from third-order terms, with the Taylor asymptotic expansion. 

System (2.26) reduces to a single second-order hyperbolic-type equation 

02¢0 I ~2C 0 5 02C0 5-~_ °, = 0 (2.7) 
3X '2 +83X'/~ 6 4 ~ 2  +1 3X 

To eliminate the cross derivative from Eq. (2.7) we make a replacement of variables, putting 

x' O 0 1 0 0 0 o=x', ~=n 16' 0%'=00 160;' Orl=O-~ 

We then reduce the equation obtained to the telegraph equation by replacing the dependent 
variable 

Co(O, ~) = w(O,~) exp ((xO + 13~) 

where (x and 13 are parameters. We obtain the following equation for the function w 

32w 232w 0w ( 2 15"~0w 

+ (  °t2-1~2u*2+15ct-'l--5"fl/w=0jo; 

where x)* = "~-i/16 is the phase velocity of propagation of the perturbation fronts to the right and to 
the left from the source in a frame of reference moving relative to the initial frame of reference with 
velocity 

u~ = 9/16 (2.8) 

The parameters (z and [3 are chosen so that the coefficients of terms containing w and Ow/O~ vanish, 
while the coefficient of Ow/O0 is positive (the last condition serves for choosing the required root of 
the quadratic equation for the parameter ct and ensures agreement between the solution in the 
asymptotic region and the solution obtained in Section 1) 

15 = - 1 5 +  41 -8 ,  8 =  (16U*) 2 13=-32u, 2 , Ot 2 

The function w now satisfies the telegraph equation 

0~' v20O~ ~ =o, ~t 2=i5 

The solution of Cauchy's problem for Eq.(2.9) with initial data 

4i 5 8  
2 (2.9) 

b)(, 

w= Wo(~), Ow/OO=wl(~) when 0 = 0  (2.10) 

can be written, using Green's function [9] with shifted arguments G(~-~' ,  O-O'),  in the form 

w(~,o) -- ~t ~ ~ [w(~', O')G(~-~',O- O')]o,=odC + 
--oo 

+ 0o" o ' )  ~G(~ - ~', 0 - 0 ' )  d~" 
__ 00' -o'=o 

(2.11) 
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When constructing Green's function we first note that the initial equation (2.9) allows of a regular 
particular solution of the form 

(2.12) 

where Io(z) is the solution of the modified Bessel equation of zeroth order 

Ig + z-' l~ - to  =0 

which is subject to tlhe initial conditions 

to(O) = I, I~(0) = 0 

it is now easy to show that 

G(~, O) = ½V .W p(~, o)n(u .O- , ~ ,) (2.13) 

where H(z) is the Heaviside unit step function, which is equal to zero for negative values of the argument, 
and equal to unity for positive values of the argument. 

Substituting relations (2.10) and (2.13) into (2.11), we obtain an explicit expression for the solution 
of Cauchy problem (2.9), (2.10) in terms of the particular solution (2.12) and the initial data 

w(;, O)= ~ exp(- 'A~u ?0)[w0(; +v,O)+ Wo(~ -o,l~)] d- 

~ + u . o  _ " _  
I j /exp(_~t2u,20)Ow,,(;: ' °)w0(; ,)+ (2.14) 

+ 2o. ;-~.ol ~0 

+ ~,(~- ~',O)w,(~')}a~' 

Investigating the behaviour of the terms contained in the solution as ~t ~ 0, we obtain that 

w(~,O)= ½IWo(~ +v*O)+ wO(~-u*O)]+ I w~f~')d~ " +O(p'21 
~-u .0 

Hence, as Ix ~ 0, formula (2.14) becomes d'Alembert's solution of Cauchy's problem for the one- 
dimensional wave equation. 

We now note that the presence in Green's function of a factor in the form of the Heaviside function 
H(o,O-  I ~l ), which is equal to zero when I ~ I > u,O, confirms that the propagation velocity of the 
perturbations is finite and also confirms the presence of perturbation jumps or fronts when ~ = ---~,0. 
The behaviour of Green's function (2.13) far from the fronts, i.e. when I ~1/(~.o) ~ 1 can be obtained 
by formally assuming u, ---) co and using the asymptotic form of the Bessel function Io(z) for large values 
of the argument 

_1 I Io(z ) = (2nt) ~eZ[I + O(z- )] 

Consequently, 

i 2 2 a<; =  oxpf ).<o)t, 
2~/~1.t20 ~, 40 J 

i.e. the principal term of the asymptotic form of Green's function as ~, ~ oo is identical with Green's 
function for the diffusion equation. 

We will also consider the asymptotic form of solution (2.14) as v, ---) oo. Since 
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2( 32 rt -rt ~-~ 
= ~ e x p [  ~ .] [, +o(v.2)l 

then, apart from terms O(v;-2), solution (2.14) can be represented in the form 

[ ~t2(;-;') 2 ] . . . . . . .  
w(~' o)= 2--~nO ~. exp-  40 J w°'t~)at~ 

which corresponds to the solution of Cauchy's problem for the diffusion equation 

~2W 2 ~W igr, 2 I.t ~ .  = o, w(~,o) = Wo(;) 

We will consider the formal problem of a pulsed 5-shaped source for Eq.(2.9), assuming 

wo(;) = 8(;), w~(;) = o 

From the general formula (2.14) of the solution of Cauchy's problem for these initial data we obtain 

! exp(_lJ2u2,0)H(u,O - I~l)wp(~.-O) 
+ 2v, 

(2.15) 

The first term in (2.15) is analogous to d'Alembert's solution, which in this case again contains an 
exponentially attenuating factor. The second term, as can easily be shown, using the asymptotic estimates 
derived above, as u. ---) oo gives the source function for the diffusion equation. 

The source function (2.15) is non-zero in the region I~1 ~ ~,o,  i.e. a pulsed source which began to 
act at the instant of time t = 0, generates, when t > 0, a perturbed region of finite size, the boundaries 
of which propagate to the right and left with velocities ___w.. We also recall that the coordinate ~ is 
measured in a frame of reference moving with respect to the initial system, connected with the tube, 
with a velocity agr (2.8). Hence, in the initial frame of reference the fronts move in the tube with velocities 
~r + v*, equal to a91 = 0.8489 and a92 = 0.2761, respectively (we recall that these dimensionless velocities 
are measured in units of U m -  the maximum velocity at the centre of the tube). 

It must, however, be borne in mind that these conclusions are obtained on the basis of the approximate 
mathematical one-dimensional model of the phenomenon, which, unlike the Taylor model of longitudinal 
dispersion, takes into account the initial stage of the development of the process approximately. In view 
of the approximate nature of the model obtained we can only assume that the fundamental mechanisms 
and features of the dispersion of passive impurity - the interaction between transverse diffusion and 
convection in a non-uniform velocity field and with a finite propagation velocity of the perturbations 
- will be adequately described by system of equations (2.5) or Eq.(2.7), whereas other effects, for 
example, the effect of molecular diffusion in a longitudinal direction, can be neglected. 

We will now write the equations of the hyperbolic one-dimensional model of dispersion in dimensional 
form. To do this we will introduce the dimensional concentration flux in the system, moving with an 
average velocity of the fluid (~t) 

j = ((u-(u))c)  (2.16) 

In the approximation considered 

j = alum (u ~01) = - alum/192 (2.17) 

Reverting in Eqs (2.5) to dimensional variables and expressing aa in terms of j, by (2.17) we have 
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ac0 u,. ac0 ~j 
at +T-ff+  =° 

~j . 5 ~j . 5 2 ~Co+15D • 
(2.18) 

Eliminating the variablej from system (2.18), we arrive at the following hyperbolic equation for Co 

3c~ 9 ~2c 0 15 2 /)2c0 15D[Oco Um OCo) 
"1" ~ /~  m ÷ at2 )=0 

In conclusion we note that the theory described can be extended to other cases of longitudinal 
dispersion [26], which differ geometrically from the simple case considered here (non-circular cross- 
sections, flows in ring gaps, three-dimensional flows with predominant longitudinal convection, etc.), 
the state of the moving medium (turbulent flow and flows of non-Newtonian fluids) or by the effect of 
physical-chemical transitions. 
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